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Abstract. – A new protocol realizing quantum key distribution for continuous variables
is proposed, in which the bright entangled EPR beams are produced from a phase-sensitive
nondegenerate optical parametric amplifier. Based on randomly changing the operating states
of NOPA at the sending station and randomly choosing the phase difference between two modes
of EPR beams at the receiving station, the secret key string is established. The application
of direct detection system of photocurrents makes the proposed scheme relatively easier to be
experimentally demonstrated.

Quantum cryptography —or, more precisely, quantum key distribution (QKD)— is a tech-
nique according to which the distribution of random number keys in two remote parties for
cryptographic purposes can be made secure by using the fundamental properties of quantum
mechanics to ensure that any interception of the key information can be detected [1–3]. It was
firstly discussed in protocols of discrete variable systems and then was experimentally carried
out using single photons as fundamental quantum systems. Although the quantum crypto-
graphy with discrete variables has the advantage of insensitivity to transmission losses, some
disadvantages mainly associated with the lack of efficient single-photon sources and the poor
efficiency of photon-counting detectors limit its practical applications. Recently, new devel-
opment on quantum cryptography using nonclassical light fields as the carriers of information
has significantly increased the interests in the continuous variable systems [4–9]. The keys
may be extracted from binary modulated EPR beam [4,6] or from correlated measurement se-
quences [7,8]. Hillery proposed a QKD scheme based on binary modulated squeezed light [10].
Cerf et al. showed that Hillery’s scheme may be improved if using Gaussian modulation [11,12]
instead of binary one and then proposed a reconciliation protocol [12] to implement this im-
proved protocol. The continuous variable QKD based on error-correcting codes and coherent
state has been suggested by Gottsmann et al. [13] and Grosshans et al. based on [14] recently.
The EPR quantum correlated light fields have been experimentally produced with optical
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Fig. 1 – The schematic for quantum key distribution. DM, dichroic mirror. rna and rnb are indepen-
dent random number sources. PBSs are polarizing beam splitter.

parametric amplifiers (OPAs) and applied successfully in the experimental investigations of
the quantum teleportation and the dense coding for continuous variables [15–18]. In this pa-
per a new QKD scheme based on bright EPR beam generated from a phase-sensitive NOPA
exchangeably operated in the states of amplification and deamplification. The binary key
string is modulated directly on EPR beams. Security is provided by the uncertainty principle
of quantum mechanics which protects from simultaneously measuring both noncommuting
quadrature phase amplitude with an arbitrary accuracy. In this proposed system, the quadra-
ture phase amplitude of light fields is directly detected, thus local oscillators for the balanced
homodyne detection are not needed. This feature simplifies the measurement systems and
may improve the detection efficiency significantly.

The schematic diagram of the QKD system is shown in fig. 1. A ring NOPA including a
type-II nonlinear crystal (χ2) serves as the EPR source. Two coherent input signals a� and
a←→ with same frequency ω0 and orthogonal polarizations are injected into the NOPA. For
simplification and without losing generality, we assume that the polarizations of the injected
signal and idler fields are oriented along the vertical and horizontal directions, and their
intensities and original phases before NOPA are considered to be identical. The amplifier
is pumped with the second harmonic wave of ωp = 2ω0 and the amplitude ap � a�, a←→;
in this case the pump field may be considered as a classical field without depletion during
the amplification process. The output signal and idler fields polarized along the vertical and
horizontal directions are denoted with b� and b←→. The input-output Heisenberg evolutions
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of the field modes of the NOPA are given by [19]

b̂0� = µâ0� + νâ†
0←→ , b̂0←→ = µâ0←→ + νâ†

0� ,

b̂+� = µâ+� + νâ†
+←→ , b̂+←→ = µâ+←→ + νâ†

+� ,

b̂−� = µâ−� + νâ†
−←→ , b̂−←→ = µâ−←→ + νâ†

−� , (1)

where â, â† and b̂, b̂† denote the annihilation and creation operators of the input and the
output modes. The subindex 0 and ± stand for the central mode at frequency ω0 and the
sidebands at frequency ω0 ± Ω, respectively. The parameters µ = cosh r and ν = eiθp sinh r
are functions of the squeezing factor r (r ∝ Lχ2|ap|, L is the nonlinear crystal length, χ2 is
the effective second-order susceptibility of the nonlinear crystal in NOPA, ap is the amplitude
of the pump field) and the phase θp of the pump field. In the following calculation the phase
θp is set to zero as the reference of relative phases of all other light fields. For bright optical
field, the quadratures of the output orthogonal polarization modes at a certain rotated phase
θ are expressed by

X̂b̂�
(θ) =

b∗0�b̂+�e−iθ + b0�b̂
†
−�e

iθ

|b0�|
= b̂+�e−i(θ+ϕ) + b̂†−�e

i(θ+ϕ) ,

X̂b̂←→
(θ) = b̂+←→e−i(θ+ϕ) + b̂†−←→ei(θ+ϕ), (2)

where ϕ = arg(b0�) = arg(b0←→) = arg(eiΦ+e−iΦ tanh r) is the phase of the modes b̂0�, b̂0←→
relative to θp and Φ is the phase of the modes â0�, â0←→ relative to θp. Taking θ = 0 and
θ = π/2 in eq. (2), the amplitude and phase quadrature of the output field are obtained:

X̂b̂�
= X̂b̂�

(0) = b̂+�e−iϕ + b̂†−�e
iϕ,

X̂b̂←→
= X̂b̂←→

(0) = b̂+←→e−iϕ + b̂†−←→eiϕ,

Ŷb̂�
= X̂b̂�

(
π

2

)
= −i

(
b̂+�e−iϕ − b̂†−�e

iϕ
)
,

Ŷb̂←→
= X̂b̂←→

(
π

2

)
= −i

(
b̂+←→e−iϕ − b̂†−←→eiϕ

)
. (3)

When the injected subharmonic signal and harmonic pump field are in phase (Φ = ϕ = 0), the
maximum parametric amplification is achieved [17]. The difference of the amplitude quadra-
tures and the sum of the phase quadratures between two orthogonal polarization modes are

X̂b̂�
− X̂b̂←→

= e−rX̂â� − e−rX̂â←→ ,

Ŷb̂�
+ Ŷb̂←→

= e−rŶâ� + e−rŶâ←→ . (4)

Under the limit r → ∞, the output orthogonal polarization modes are the perfect EPR beams
with quadrature amplitude correlation and quadrature phase anticorrelation [17]. When the
injected subharmonic signal and harmonic pump fields are out of phase, i.e. Φ = ϕ = π/2,
NOPA operates at parametric deamplification [18, 20]. Therefore, the sum of the amplitude
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Table I – Generation of the secret key string.

Time T1 T2 T3 T5 T6

Alice
State of NOPA Dam Am Am Dam Am

rna 1 0 0 0 1
rnb 0 1 1 0 0

Bob AQ AQ PQ PQ PQ
Correlation Yes No Yes No Yes

Key 1 – 1 – 0

quadratures and the difference of the phase quadratures of the orthogonal polarization modes
are as follows:

X̂b̂�
+ X̂b̂←→

= e−rŶâ� + e−rŶâ←→ ,

Ŷb̂�
− Ŷb̂←→

= e−rX̂â� − e−rX̂â←→ . (5)

Obviously, the EPR beams with the quadrature amplitude anticorrelation and quadrature
phase correlation are obtained for r > 0.

For implementing the QKD with the bright EPR beams, the EPR source is placed in
Alice’s station (sender). Controlling the relative phase between the pump and the injected
signal fields of the NOPA to Φ = 0 or Φ = π/2, the two types of EPR beams specified
by eqs. (4) and (5) are produced. In this proposed scheme, we require the two types of
EPR beams having the same intensity which may be realized by simultaneously adjusting
the power of the pump field when the relative phase is changed in experiments. The random
exchanging between the two types of EPR correlations is controlled by Alice; therefore, an
eavesdropper cannot determine which type of correlation the bright EPR beams process. Alice
splits two orthogonal polarization modes which are two quantum-correlated halves of the EPR
beams, to two space-separated modes b̂1 and b̂2 with the polarizer (PBS1). Alice generates two
independent random strings of binary numbers and encodes random strings on the bright EPR
beams with the help of switches which are gated on and off to control radio frequency (RF)
sources. The RF signals of one random string are modulated on the amplitude quadrature of
b̂1 and b̂2 simultaneously with reverse signs by amplitude modulators (AM) and the ones of
the other random string on phase quadrature by phase modulators (PM). Alternatively, the
operating state of NOPA between amplification and deamplification and modulating signals
on b̂1 and b̂2 have to be synchronized. From eqs. (3) we know that the amplitude and phase
quadratures 〈δ(X̂b̂1

)2〉 = 〈δ(X̂b̂2
)2〉 = 〈δ(Ŷb̂1

)2〉 = 〈δ(Ŷb̂2
)2〉 of EPR beams have a large noise

when the squeezing factor r is large. We make the modulated signals be completely submerged
in the large noise background. Alice now decides at random whether to send EPR beams
with 〈δ(X̂b̂1

+ X̂b̂2
)2〉/2 < 1 and 〈δ(Ŷb̂1

− Ŷb̂2
)2〉/2 < 1 or with 〈δ(X̂b̂1

− X̂b̂2
)2〉/2 < 1 and

〈δ(Ŷb̂1
+Ŷb̂2

)2〉/2 < 1, and Bob decides, also at random, which quadratures are to be measured.

We consider that two optical modes b̂1 and b̂2 have the boson commutation relations[
b̂k, b̂k′

]
=

[
b̂†k, b̂†k′

]
= 0,

[
b̂k, b̂†k′

]
= δkk′ k, k′ = 1, 2. (6)

The quadrature phase amplitudes of the two optical modes are given by

X̂b̂k
= b̂k + b̂†k, Ŷb̂k

= −i
(
b̂k − b̂†k

)
. (7)
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The quadrature phase amplitudes obey the commutation relations[
X̂b̂k

, X̂b̂k′

]
=

[
Ŷb̂k

, Ŷb̂k′

]
= 0,

[
X̂b̂k

, Ŷb̂k′

]
= 2iδkk′ , k, k′ = 1, 2. (8)

Performing the unitary transformation on the modes b̂1 and b̂2, we have

ĉ1 =
1√
2

(
b̂1 − b̂2

)
, ĉ2 =

1√
2

(
b̂1 + b̂2

)
. (9)

Thus the operators ĉ1 and ĉ2 satisfy the commutation relations just like modes b̂1 and b̂2

(eq. (6)). The quadrature phase amplitudes of the operators ĉ1 and ĉ2 can be written as

X̂ĉ1 =
1√
2

(
X̂b̂1

− X̂b̂2

)
, Ŷĉ1 =

1√
2

(
Ŷb̂1

− Ŷb̂2

)
,

X̂ĉ2 =
1√
2

(
X̂b̂1

+ X̂b̂2

)
, Ŷĉ2 =

1√
2

(
Ŷb̂1

+ Ŷb̂2

)
. (10)

The quadrature phase amplitudes of the operators ĉ1 and ĉ2 also obey the commutation rela-
tions (8). According to the commutation relations, the corresponding uncertainty principles
of the quadrature phase amplitudes of the operators ĉ1 and ĉ2 are〈

δX̂2
ĉ1

〉〈
δŶ 2

ĉ1

〉
� 1,

〈
δX̂2

ĉ2

〉〈
δŶ 2

ĉ2

〉
� 1. (11)

Equations (8) and (11) imply that quadrature amplitude difference X̂ĉ1 and quadrature phase
difference Ŷĉ1 cannot be measured simultaneously with arbitrarily high accuracy. However,
the differences of the amplitude or phase quadratures of modes b̂1 and b̂2, X̂ĉ1 or Ŷĉ1 and the
sums, X̂ĉ2 or Ŷĉ2 , are commutated and may be simultaneously measured with high accuracy.
In our protocol the binary modulated signals on two halves of EPR beams are out of phase,
therefore the quadrature amplitude sum X̂ĉ2 or the quadrature phase sum Ŷĉ2 do not carry
any binary modulated signal and are not used for the communication. At Bob’s station the
two bright modes b̂1 and b̂2 are combined into a same direction with a polarizing beamsplitter
(PBS2), then are split into two modes ê and f̂ by PBS3. The modes ê and f̂ are written as

ê = b̂1 cos
θ

2
+ îb2 sin

θ

2
, f̂ = b̂2 cos

θ

2
+ îb1 sin

θ

2
, (12)

where θ is the relative phase between the modes b̂2 and b̂1 which is controlled by a variable
delay. The bright output beams ê and f̂ are directly detected by D1 and D2, then the detected
photocurrents are subtracted with a negative power combiner (−). Bob randomly chooses
either θ = 0 or θ = π/2. When θ = 0 the normalized output spectrum of the photocurrent
difference is given by

î 0
−(Ω) =

1√
2

[
X̂b̂1

(Ω)− X̂b̂2
(Ω)

]
+ Xs,rna , (13)

where Xs,rna stands for the signals of the random string a (rna) modulated on amplitude
quadrature. In this case, the amplitude quadrature difference measurement between two
modes b̂1 and b̂2 can be achieved by means of the direct detection of photocurrent. If the
EPR beams with the correlated amplitude quadrature are received, Bob obtains the data
string rna imposed on the sub-QNL noise floor and serves it as key and if deamplification
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occurs, Bob is not able to extract the signal submerged in the large noise background [9, 18].
For θ = π/2, the normalized output spectrum of photocurrent difference is given by [16]

î
π/2
− (Ω) =

1√
2

[
Ŷb̂1

(Ω)− Ŷb̂2
(Ω)

]
+ Ys,rnb, (14)

where Ys,rnb stands for the signals of the random string b (rnb) modulated on phase quadra-
ture. The phase quadrature difference measurement between two modes b̂1 and b̂2 can be
achieved by the direct detection system of photocurrents without the help of LO beam. If
the received EPR beams are phase-correlated, Bob obtains the data string rna modulated
on the phase quadrature of EPR beams. Of course, if they are anticorrelated, Bob obtains
nothing. What mentioned above and eqs. (4), (5) show that only when Alice operates NOPA
at amplification and Bob chooses θ = 0, the signals modulated on amplitude quadrature can
be obtained by Bob, as well as only when Alice operates NOPA at the deamplification and
Bob chooses θ = π/2, the signals modulated on phase quadrature can be extracted by Bob.
After a communication of a key string is accomplished, Bob tells Alice on a public line which
quadrature he detected at given time points, but he does not tell the signals he obtained.
Statistically, the probability that Bob obtains the signals is 50%. At this stage, Alice and Bob
generate the common secret key. This protocol is summarized in table I. The presence of Eve
will be revealed by increased noise floor of signals or by events “no key” occurring statistically
more than 50%. Because of the transmission errors (and possibly the actions of Eve) Alice
and Bob will not share the same data string. However, techniques exist for data reconciliation
and privacy amplification which allow Alice and Bob to select with high probability a subset
of their data which is error free [12,21]. In the proposed protocol, the security of transmission
against eavesdropping is guaranteed by the sensitivity of the existing correlations to losses
and by the impossibility to measure both conjugate variables simultaneously due to the limi-
tation of the uncertainty principle. The complete security analysis for the case of continuous
variables is non-trivial and lies beyond the scope of the present paper. The general proof
of the optimum eavesdropper strategies for continuous variable scheme has been discussed in
refs. [5, 13,14].

In conclusion, we propose a protocol of the quantum key distribution which may be exper-
imentally realized by using a NOPA as the EPR source and controlling the operating states
of NOPA. By means of the random choices to the operating states of amplification and deam-
plification at Alice and the measured quadratures (quadrature amplitude difference X̂ĉ1 or
quadrature phase difference Ŷĉ1) at Bob, the secret key is established. The uncertainty rela-
tions of quantum mechanics provide the security of the communication. Due to exploiting the
bright EPR beams generated from NOPA and the directly measuring technique, the troubles
due to the local oscillator and the high sensitivity to mode-mismatching which are met in
usual homodyne detection are eliminated.
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